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Summary
Focussing arising from reflections at concave surfaces is a well-known problem in room acoustics. Focussing can
cause high sound pressure levels, colouration or an echo. Although the problem is known, the amplification in
the focal point and the sound field around the focal point are not. This paper provides some mathematical formu-
lations for sound reflections from concave spherical surfaces. The formulation is based on a wave extrapolation
method. The approximations given can be used to calculate the sound field in and around the focal point. The
calculation method is verified with an experiment. In the focal point the pressure depends on the wavelength. The
width of the peak pressure is also related to the wavelength. For small wavelengths the amplification is high but
the area is small, while for lower frequencies the amplification is less, but the area is larger. In a second part of
this paper [1] geometrical and engineering methods will be discussed for describing the focussing effect.

PACS no. 43.55.Br, 43.55.Ka

1. Introduction

A well-known problem in room acoustics is the focussing
effect arising from concave surfaces. This focussing may
be audible through colouration and/or echo effects. Al-
though the phenomenon is well-known, quantification of
the problem is not. The purpose of this paper is to investi-
gate the sound reflection from spherically-curved surfaces.

This paper comprises two parts. This first will provide a
wave field solution for the sound reflection from a spher-
ical disk. The second will deal with geometrical methods
to describe the sound field from an engineering approach,
based mainly on the results of this first part.

2. Previous research

One of the most common prediction methods in room
acoustics is the geometric approach. Part II of this paper
summarises prediction of the sound field by geometrical
acoustics for concave surfaces. The essential deficiency
of this method is the infinite pressure in the focal point.
Nevertheless the geometrical method might enable suffi-
cient prediction for room acoustical purposes (depending
on the accuracy one wants to obtain), as long it is only
applied at a sufficient distance from the focal point. The
sound pressure in the focal point can only be calculated
by incorporating the wave character into the calculation
method. The Huygens principle can be used for this pur-
pose. In his book on the theory of sound Rayleigh points
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out [2, §285] that the Huygens principle may also be used
for the reflections of sound from curved surfaces, but it is
not investigated further mathematically.

A similar situation on the reflection of sound can be
found in ultrasonics, where focussed radiators are used.
The sound fields generated by these radiators are stud-
ied extensively (see e.g.[3, 4, 5]). The phase at the radi-
ator surface is uniform, corresponding to the reflection of
sound from a source in the centre of a sphere segment.
However the radiators used have a small aperture angle.

A theoretical wave description of the sound field by
a parabolic reflector used as a directional microphone is
given in [6].

In [7] and [8] the reflected sound field inside cylinders
is presented.

In this paper the theory will be applied to room acousti-
cal applications, by extending the theory of 3D radiators
to larger aperture angles and for sound sources outside
the centre of the sphere. Some validation measurements
are presented. A second paper presents an engineering ap-
proach to this problem. Parts of this work are presented in
[9].

3. Wave-based methods

The Huygens Principle states that every point on the pri-
mary wavefront can be thought of as an emitter of sec-
ondary wavelets. The secondary wavelets combine to pro-
duce a new wavefront in the direction of propagation.
From Green’s theorem and the Helmholz equation, Kirch-
hoff formulated the following expression for the sound
pressure p at point A in a volume V that is bounded by
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a surface S (for a sine signal with angular frequency ω):

p(A,ω) =
1
4π S

p(B,ω)
1 + jkr

r
cosϕ

e−jkr

r
(1)

+ jωρvn(B,ω)
e−jkr

r
dS.

The notation is illustrated in Figure 1.
Pressure contributions are calculated from (known) mo-

nopole sources and dipole sources. The monopole and di-
pole source can be calculated from the field radiated from
a monopole at distance s from the surface points B:

p(B,ω) = p̂
e−jks

s

and v(B,ω) = − 1
jωρ

∂p

∂s
=

1
ρc

1 + jks
jks

p̂
e−jks

s
,

and the normal velocity vn(r, ω) = cos α ·v(r, ω), where p̂
is an amplitude factor, chosen so that it yields the pressure
at 1m from the source. So this gives us

p(A,ω) =
p̂

4π S

1 + jkr
r

cosϕ +
1 + jks

s
cos α

· e
−jk(r+s)

rs
dS. (2)

This is a rigorous solution that can be applied not only in
the case of a ‘virtual’ surface S but also for real reflecting
boundaries. Theoretically the volume has to be closed, in
practice the amplitudes of the secondary sources of parts
that do not reflect sound are set to zero. It is noted however
that only the first reflection is modelled. Second-order re-
flections (from the reflector to another part of the reflector
and than to point A) are not modelled. These second-order
reflections are expected to produce a low noise level, low
compared to the pressure in the focal point.

To derive analytic functions from (2) it might be neces-
sary to approximate this function. In the far field (kr � 1
and ks � 1) the Fresnel-Kirchhoff diffraction formula is
obtained,

p(A,ω) =
jp̂
λ S

cosϕ + cos α
2

e−jk(r+s)

rs
dS. (3)

In many publications the inclination or obliquity factor
(cosϕ + cos α)/2 is set to 1; this will further simplify (3)
and is correct for large virtual-plane surfaces (Rayleigh in-
tegral). For curved surfaces (2) or (3) need to be applied.

4. Integral formulation for a sphere

The geometry of a hemisphere reflector is shown in Fig-
ure 2. Using polar co-ordinates, with positions on the
sphere described by z = R cos θ, x = R sin θ cosϕ and
y = R sin θ sinϕ, a small surface element can be described
by dS = R2 sin θ dθ dϕ and the integral formulation for

B

A

s
S

V

α

φ r

Figure 1. Notation symbols used.
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Figure 2. Coordinates used for the sphere.

the pressure of a reflection from this surface becomes

p(A,ω) =
p̂R2

4π

π/2

θ=0

2π

ϕ=0
sin θ

1 + jkr
r

cosϕ (4)

+
1 + jks

s
cos α

e−jk(r+s)

rs
dθ dϕ.

In the case of sphere segments (e.g. a circular sphere seg-
ment with 0 ≤ θ ≤ θm, where θm is the opening angle)
the integration limits have to be adapted accordingly. Fig-
ure 3 shows the result of some numeric calculations with
(4) at the y = 0 plane (a vertical section of the hemisphere
shown in Figure 2).

Note that for high frequencies (e.g. b: θm = π/5 at
1000Hz) an illuminated region is obtained with strong
interferences, while for low frequencies and low aper-
ture angles a diffusing sound field is obtained (e.g. for f:
θm = π/10 at 250Hz).

5. Pressure in the focal point

Should the source be positioned in the centre of the sphere,
the focal point will be at the same point. At that point s =
r = R, cos α = cosϕ = 1. Assuming kR � 1 the pressure
in the focal point of a hemisphere reduces to

p(0, ω) =
jp̂
λ

π/2

θ=0

2π

ϕ=0
sin θe−jk2R dϕ dθ

= jkp̂e−jk2R. (5)
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Figure 3. Numeric calculations of the reflected sound field based
on (4). For 3 different sizes of the sphere segment (θm =
π/2, π/5, π/10) and 2 frequencies. The radius R of the sphere
segment is 5.4m. The source is in the centre point. The differ-
ence between white and black is 30 dB. Upper row: f = 1000Hz,
k = 18.4, kR = 100, lower row: f = 250Hz, k = 4.6, kR = 25.

For sphere segments with an opening angle θm (for the
hemisphere θm = π/2) the pressure will be p(0, ω) =
jkp̂(1 − cos θm)e−jk2R.

The amplitude of the pressure will be

p(0, ω) = kp̂(1 − cos θm). (6)

The rms value will be p2rms = 1/2p̂2k2(1 − cos θm)2.
With these results the maximum sound pressure at the

focal point, due to reflections against spherically curved
surfaces, can be calculated. The result strongly depends
on the frequency. High frequencies give very strong am-
plification at the focal point. It should however be noted
that a perfect spherically-curved surface and full reflection
is assumed.

The situation with the source in the centre is simi-
lar to focussing radiators used for ultrasound. The solu-
tion derived by [5] (after translating it to our notation) is
p(0, ω) = 1/2p̂ sin2 θm. For small aperture angles the factor
involving the aperture angles is (1− cosωm) ≈ 1/2 sin2 θm.

For the description of the sound field the pressure at a
certain point A will be related to the pressure at the focal
point

f (A) =
p(A,ω)
p(0, ω)

=
p(A,ω)

p̂k(1 − ωm)
. (7)

6. Approximate solution of the integral

Since there is no primitive function for (4), a closed-form
solution of the integral is not possible. With some approxi-

mations however a fairly accurate description of the sound
field can be obtained, especially for the highest sound pres-
sures.

The co-ordinates for the source B are (xB, yB, zB) and
for the receiver A (xA, yA, zA). The distance from the
source to the surface element dS is described by

s2 = (R sin θ cosϕ − xB)2 + (R sin θ sinϕ − yB)2

+ (R cos θ − zB)2

= R2 − 2R sin θ(xB cosϕ + yB sinϕ)

− 2zBR cos θ + y2
B + x2

B + z2B.

The best possible approximation of the distance, indepen-
dent of ϕ or θ, will be the distance from B to the centre of
the sphere segment s�,

s�2 = (R − zB)2 + x2
B + y2

B

= R2 − 2zBR + z2B + x2
B + y2

B,

this will result in

s2 = s�2 − 2R sin θ(xB cosϕ + yB sinϕ)

+ 2zBR(1 − cos θ).

In the same way the distance from dS to the receiver in A
can be determined,

r2 = r�2 − 2R sin θ(xA cosϕ + yA sinϕ)

+ 2zAR(1 − cos θ).

The first approximation to make is taking the first two
terms of the Taylor series.
For RA < 1/2

√
λR (with RA: distance from A to the cen-

tre):

r ≈ r� − R

r�
sin θ(xA cosϕ+yA sinϕ) +

R

r�
zA(1 − cos θ)

and

s ≈ s� − R

s�
sin θ(xB cosϕ+yB sinϕ) +

R

s�
zB (1 − cos θ).

The second approximation, using (4), is only to consider
the far field and to assume cos α = cosϕ = 1,

p(A,ω) = j
p̂kR2

2π

θm

θ=0

2π

ϕ=0
sin θ

e−jk(r+s)

rs
dθ dϕ, (8)

where θm is the aperture angle of the sphere segment. Fill-
ing in the obtained approximations for r and s (for the
amplitude use r� and s�)

p(A,ω) = j
p̂kR2e−jk(r�+s�)

2πr�s�

θm

θ=0
sin θ e−jkR zA

r� +
zB
s� (1−cos θ)

·
2π

ϕ=0
e jkR sin θ xA

r� +
xB
s� cosϕ+ yA

r� +
yB
s� sinϕ dθ dϕ.

Using

1
2π

e jz(a cosϕ+b sinϕ) dϕ = J0 z a2 + b2 ,
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where J0 is the 0-th order Bessel function of the first kind,
results in

p(A,ω) = j
p̂kR2e−jk(r�+s�)

r�s�

θm

θ=0
sin θe−jkR zA

r� +
zB
s� (1−cos θ)

· J0 kR sin θ
xA

r�
+

xB

s�
2
+

yA
r�

+
yB
s�

2
dθ.

For solving this integral the method used by [5] will be
followed: Substituting u = sin θ/ sin θm and du/dθ =
cos θ/ sin θm,

p(A,ω) = j
p̂kR2e−jk(r�+s�)

r�s�

·
1

u=0

sin2 θmu

cos θ
e−jk sin2 θm R/2 zA

r� +
zB
s� u2

· J0 kR sin θmu
xA

r�
+

xB

s�
2
+

yA
r�

+
yB
s�

2
du.

For small θ this can be simplified to

p(A,ω) = j
p̂Re−jk(r�+s�)

s�zA + r�zB
Y

1

u=0
ue−j Y2 u

2
J0 Zu du

= j
p̂Re−jk(r�+s�)

s�zA + r�zB
I (Y,Z), (9)

with

Y = kR sin2 θm(zA/r� + zB/s
�),

Z = kR sin θm (xA/r� + xB/s�)2 + (yA/r� + yB/s�)2,

I (Y,Z) = Y
1

u=0
ue−j Y2 u

2
J0(Zu) du.

The latter can be solved by the following power series so-
lution (Lommel integrals):

I (Y,Z) = e−jY/2 u1(Y,Z) + ju2(Y,Z) (10)

with

u1(Y,Z) =
∞

n=0

(−1)n
Y

Z

2n+1
J2n+1(Z),

u2(Y,Z) =
∞

n=0

(−1)n
Y

Z

2n+2
J2n+2(Z).

These series will converge for Y < Z; this will be in the
shadow zone. In the illuminated zone (where Z < Y ) a
better convergence is realised by using

u1(Y,Z) = sin
Y

2
+

Z2

2Y
− v1(Y,Z), (11)

u2(Y,Z) = − cos
Y

2
+

Z2

2Y
+ v0(Y,Z), (12)

v0(Y,Z) =
∞

n=0

(−1)n
Z

Y

2n
J2n(Z), (13)

v1(Y,Z) =
∞

n=0

(−1)n
Z

Y

2n+1
J2n+1(Z). (14)

For practical applications using the first term of v0 and v1
will be sufficient,

I (Y,Z) = e−jY/2 sin
Y

2
+

Z2

2Y
(15)

− Z

Y
J1(Z) + j − cos

Y

2
+

Z2

2Y
+ J0(Z) ,

I (Y,Z) = J0(Z) − cos
Y

2
+

Z2

2Y

2

+
Z

Y
J1(Z) − sin

Y

2
+

Z2

2Y

2 1/2

,

p(A,ω) =
p̂R

s�zA + r�zB
I (Y,Z) , (16)

f (A) =
R

k(1 − cos θm)(s�zA + r�zB)
I (Y,Z) .

Based on (15), the sound field at the focal point, on the
focal axis, in the focal plane and in the far field will be
described in the following sections.

7. Pressure in the focal point based on
approximation

7.1. Source in the centre

At the focal point, with the source in the centre, Y = 0
and Z = 0. Due to the singularity the pressure cannot be
calculated with (10) and (16) in the centre, and (9) will be
used,

p(A,ω) = j
p̂kR2 sin2 θme−jk 2R

R2

1

u=0
uJ0 0 du

= jp̂k
sin2 θm

2
e−j2kR. (17)

As shown before, 1/2 sin2 θm ≈ (1 − cos θm) for small θm,
this yields the same as (6).

7.2. Source position outside the centre

From the definition of Y and Z it can directly be seen
that they will be zero (and the focussing effect will be
maximum) when xA/r

� = −xB/s
�, yB/s� = −yA/r� and

zA/r
� = −zB/s�.

These relations correspond to the thin lens formula.

However it has to be realised that some approximations
are made. In the integration the cos α and cosϕ (see for-
mula 4) should be considered. For zA = zB = 0 the ef-
fect of incorporating this factor in the integration can be
approximated by ≈ 1 − (x2

B + y2
B)/2R

2. When taking a
closer look into the distances r and s one has to realise
that changing the angle does influence the distances due to
spherical aberration. The effect can be estimated by taking
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into account some additional terms of the Taylor series

s ≈ R − xB sin θ cosϕ +
x2
B

2R

− x2
B sin2 θ cos2 ϕ

2R
+

x3
B sin θ cosϕ

2R2
,

r ≈ R + xB sin θ cosϕ +
x2
B

2R

− x2
B sin2 θ cos2 ϕ

2R
− x3

B sin θ cosϕ

2R2
,

r + s ≈ 2R +
x2
B (1 − sin2 θ cos2 ϕ)

R
.

The reduction factor of the pressure at the receiver point
can be calculated from

f (−xB) =
1

2π(1 − cos θm)

·
2π

0

θm

0
sin θe−jk

x2
B
R (1−sin2 θ cos2 ϕ) dθ dϕ

using

1
2π

2π

0
e jz cos2 ϕ dϕ = J0 z/2 :

e−jkx2
B/R

2π(1 − cos θm)

2π

0

θm

0
sin θe jk

x2
B
R (sin2 θ cos2 ϕ) dθ dϕ

=
e−jkx2

B/R

(1 − cos θm)

θm

0
sin θJ0 k

x2
B

2R
sin2 θ dθ. (18)

A calculation example is given in Figure 4.
It is noted that these effects are not incorporated in the

approximate solution in (9). For a source position outside
the centre the approximation solution can be seen as a
maximum. When the distance of the source to the centre is
less than 1/3R, the error is not more than a factor 2.

8. Pressure at the axis of the sphere
segment

8.1. Source at the centre

First the source will be left in the centre of the sphere while
considering the pressure at the receiver position (0, 0, zA)
along the z-axis.
This means that Y = kR|zA/(R− zA)| sin2 θm and Z = 0.

Using (16) with v0 = 1 and v1 = 0,

I (Y,Z) = 1 − cos
Y

2

2
+ sin

Y

2

2 1/2

= 2 1 − cos kR
zA

R − zA

sin2 θm
2

,

p(A,ω) =
p̂R

s�zA + r�zB
I (Y,Z)
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Figure 4. The pressure (relative to p̂) at the focal point depends
on the distance x of source and receiver from the centre of the
sphere. Here for R = 10m, f = 500Hz, θm = π/4. Numerical
solution with (4) and the approximation with (18) (by numerical
integration).
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1000 Hz, 1/2π (19)

Figure 5. On axis, sound pressure relative to the pressure in the
centre. The x-axis is the relative distance z/R to the centre. Re-
sults for 1000 and 250Hz (see Figure 3a and e), obtained by
numeric calculation (4) and by (19).

=
2p̂
zA

sin kR
zA

R − zA

sin2 θm
4

, (19)

f (A,ω) ≈ R

R − zA

·
sin 1/2kR(1 − cos θm) zA/(R − zA)

1/2kR(1 − cos θm) zA/(R − zA)
.

In the centre of the sphere zA = 0, |f (A,ω)| = 1.
Figure 5 shows a comparison between numerical results

(4) and (19) for small and large kR(1 − cos θm) (situation
from Figure 3a and e). The approximation by (19) gives a
slightly higher result but the general result is quite good.
It should be noted that in the numeric integration the cosϕ
(see equation 4) is incorporated; it is not in (19). Further-
more it is noted that for the lower frequency, the maximum
is not exactly at the focal point. However the deviation is
small.
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The ‘depth’ of the focussing effect, described by the
−3 dB points will occur at |f (A,ω)| = √

2/2. For zA � R
this can be approximated by

zA ≈ ±0.44
λ

(1 − cos θm)
.

For a further analysis of the decrease with distance it is
interesting to see when there are no zeros beyond the focal
point. This will occur when in (19)

kR
zA

R − zA

(1 − cos θm)
2

< kR
(1 − cos θm)

2
< π,

so when kR(1 − cos θm) < 2π.
It is noted that R(1− cos θm) is the ‘depth’ of the sphere

segment. The condition kR(1 − cos θm) < 2π means that
less then one wavelength fits in this depth.

The following three situations can be distinguished:
A. depth is more than a wavelength,
B. depth is between a quarter and a full wavelength,
C. depth is less than a quarter wavelength.

Situation A (depth is more than a wavelength): Transi-
tion to geometrical decrease with distance
For situation A the point will be considered where the
curve will cross the curve of the geometric decrease with
distance, assuming the centre point as a (mirror) source
(beyond that point strong interferences may be found, but
these are of minor concern),

p(A,ω) =
2p̂
zA

sin kR
zA

R−zA

(1 − cos θm)
2

=
p̂

zA
.

This will be for

kR
(1 − cos θm)

2
zA

R − zA
= nπ ± 1

6
π

with n = . . . ,−3,−2,−1, 0, 1, 2, 3, . . .
Particularly interesting will be ±5π/6.
Since kR(1 − cos θm) is sufficiently large, the intersec-

tion points will be at

zA = ± 5Rλ

6R(1 − cos θm) ± 5λ
(20)

≈ ± Rλ

R(1 − cos θm) ± λ
.

This is illustrated in Figure 6. Outside these points the
average pressure may be approximated by a geometrical
method.

Situation C (depth is less than a quarter wavelength):
strong diffraction
When the depth of the segment is less than a quarter wave-
length, diffraction from the segment will occur, similar to,
or even almost equal to, the diffraction from a flat disk.
The pressure amplitude will be inversely proportional to
the distance from the sphere instead of the distance from
the centre of the sphere,

p(z) = p̂
kR(1 − cos θm)

R − z
, (21)

0
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0,5

0,6

0,7
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0,9

1

-3 -2 -1 0
z/R

f(z)
on axis (19)

geometrical

geometrical

Figure 6. On axis, sound pressure relative to the pressure in the
centre for situation A: (depth is more than a wavelength). Shown
is the decrease calculated with (19) and the geometrical decrease
from the points indicated by (20). Calculation for the situation of
Figure 3b: kR(1 − cos θm) = 19.

where R − z is the distance from the sphere.
This is valid within 10% for

z <
R
√
2.4√

2.4 + kR(1 − cos θm)

(with 0 < z < R).

Situation B (depth is between a quarter and a full wave-
length)

The situation for π/2 < kR(1 − cos θm) < 2π can
be considered as an ‘in between’ situation with a virtual
monopole somewhere between the sphere segment and the
centre. A sort of beam will be obtained, as can be seen in
Figure 3 (situation c and e). Formula (19) has to be used to
describe the decrease in pressure, also at a larger distance.

8.2. Source position along the axis

For a source out of the centre, but along the axis of the
sphere segment Y = kR sin2 θm[zA/(R − zA) + zB/(R −
zB)] and Z = 0, this will result in

p(A,ω) =
2p̂

zA + zB − 2zAzB/R
(22)

· sin 1
2
kR(1 − cos θm)

zA
R − zA

+
zB

R − zB
.

It has to be realised that due to spherical aberration the
pressure in the focal point for eccentric situations may be
somewhat lower, as explained in section 7.

9. Pressure in the focal plane

9.1. Source at the centre

For calculating the pressure in the focal plane, the source
will be placed in the centre of the sphere and the pressure
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Figure 7. Pressure in focal plane (with p̂ = 1N/m, radius R =
5.4m). Top: 1000Hz, θm = π/2 (Figure 3a), bottom: 250Hz,
θm = π/5 (Figure 3e). Calculated with (4), (23) and (25).

is considered at positions (xA, yA, 0). Since this situation
is cylindrically symmetrical, yA = 0. For that situation

Y = kR sin2 θm
zA
r�

+
zB
s�

= 0,

Z = kR sin θm sin
xA

r�
.

Application of formula (10), with lim(Y → 0), only the
first term of u1 is needed, u1(0, Z) = J1(Z) Y/Z and u2 =
0, so

I (Y,Z) = e−jY/2 Y

Z
J1(Z),

p(A,ω) =
p̂R

s�zA + r�zB
I (Y,Z)

= p̂k
R

r�
sin2 θm

J1 kR sin θm
xA
r�

kR sin θm
xA
r�

, (23)

ffp(xA) =
p(A,ω)

p̂k(1 − cos θm)

=
R

r�

2J1 kR sin θm
xA
r�

kR sin θm
xA
r�

. (24)

A comparison of (23) with numeric results from (4) is pre-
sented in Figure 7.

For kxA sin θm < 2 (xA < λ/(π sin θm)) the function
ffp can be simplified by

ffp(xA) ≈ cos
1
2
kR sin θm

xA

r�
. (25)

This will only approximate the main lobe, as can be seen
in Figure 7, but that will be sufficient for most purposes in
room acoustics.

The width of the lobe, defined by the −3 dB points, will
be −π/4 < 1/2kR sin θm xA/r

� < π/4, which is approxi-
mately −λ/(4 sin θm) < xA < λ/(4 sin θm).

For a hemisphere (θm = π/2) the total width of the lobe
will be λ/2.

This means the energy will distribute over a certain area,
related to the wavelength. The pressure will therefore also
be limited and related to wavelength. In the geometrical
method the area of the focussing point will be infinitely
small, and therefore the pressure infinitely high.

9.2. Source outside the centre

When moving the source along the x-axis: Y = 0.
When both source and receiver are on the x-axis (yA =

yB = 0): Z = kR sin θm(xA/r
� + xB/s

�),

p(A,ω) =
p̂R|e−jY/2|
s�zA + r�zB

Y

Z
J1(Z)

=
p̂R

s�zA + r�zB

kR sin2 θm
zA
r� +

zB
s�

kR sin θm
xA
r� +

xB
s�

· J1 kR sin θm
xA

r�
+

xB

s�
,

ffp(x) =
R2

s�r�
2J1 kR sin θm

xA
r� +

xB
s�

kR sin θm
xA
r� +

xB
s�

. (26)

For the main lobe k(xA + xB) sin θm < 2, so (xA + xB) <
λ/(π sin θm), the function ffp can be simplified by

ffp(xA) ≈ cos
1
2
kR sin θm

xA

r�
+

xB

s�
. (27)

This means (approximately) that the pressure field will
‘move’ to the specular direction.

10. Pressure in the far field

10.1. Source at the centre

The source will be placed in the centre of the sphere again
and the pressure in the far field will be considered. This
situation is cylindrically symmetrical, so yA = 0 can be
assumed, and xA/r

� = sin θr. Since zA � R it can be
assumed that 4zA/r� ≈ (zA − R)/r� = cos θr, resulting in

Y = kR sin2 θm
zA
r�

+
zB
s�

≈ kR sin2 θm cos θr,

Z = kR sin θm
xA

r�
+

xB

s�
2
+

yA
r�

+
yB
s�

2

= kR sin θm sin θr.

So Y/Z = sin θm/ tan θr and
Y/2 +Z2/2Y = 1/2kR(sin2 θm cos θr + sin2 θr/ cos θr).

Should the pressure near the axis of the sphere segment
(Z � Y ) be considered, it can be assumed that cos θr ≈ 1,
which results in Y/2+Z2/2Y ≈ 1/2kR(sin2 θm + sin2 θr).
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In the illuminated zone, for Z < Y , so tan θr < sin θm,
(15) can be used, giving

I (Y,Z) = J0 kR sin θm sin θr

− cos
1
2
kR(sin2 θm + sin2 θr)

2

+
tan θr
tan θm

J1 kR sin θm sin θr (28)

− sin
1
2
kR(sin2 θm + sin2 θr)

2 1/2

.

This is only sufficiently accurate for small θm and small θr.

p(A,ω) =
p̂R

s�zA + r�zB
I (Y,Z) ,

with the source in the centre:

p(A,ω) =
p̂

zA
I (Y,Z) . (29)

Formulae (28) and (29) describe the interference pattern in
the far field. However the deviations around the geometri-
cal value are limited, so for most room acoustical purposes
the geometrical approximation will be sufficient.

There are however some interesting cases to consider:
Should kR(1 − cos θm) = π, 3π, . . . , nπ with n be an un-
even whole number (the ‘depth’ of the sphere segment cor-
responds to nλ/2), there is a pronounced maximum on the
axis (θr = 0). For small angles θr, |I (Y,Z)| can be ap-
proximated by

I (Y,Z) ≈ 1 + J0 kR sin θm sin θr
2

− 2J0 kR sin θm sin θr

· cos 1
2
kR(sin2 θm + sin2 θr)

2 1/2
,

I (Y,Z) ≈ 1 + cos
1√
2
kR(sin θm sin θr) . (30)

On the axis (θr = 0) this will result in |I (Y,Z)| = 2.
The pressure on the axis will be double the pressure

based on the geometrical approach.
Formula (30) can be applied for

cos kR sin θm sin θr/ 2 > 0,

so

kR sin θm sin θr/ 2 < π/2,

therefore

| sin θr| < 2λ/(4R sin θm).

Should kR(1−cos θm) = 2π, 4π, . . . , nπ with n be an even
whole number (the ‘depth’ of the sphere segment corre-
sponds to nλ/2), there is a minimum on the axis (θr = 0).

Some calculation examples are given in Figure 8.
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Figure 8. Calculated pressure, using (4), in the far field (1000m)
as a function of the radiation angle. Calculations for different
frequencies, corresponding with ‘depth’ =nλ/2. R = 5.4m, θm
= π/5. Also showing the approximated peaks using (30).

The pressure at the borders of the illuminated area (in
the case of Figure 8 indicated by the geometrical approach:
±θm = ±π/5 ≈ ±0.62) are roughly half the geometrical
pressure.

For small depth of the sphere segments,

kR(1 − cos θm) ≤ π/2,

a diffusing sound field will be obtained, outside the borders
of the ‘illuminated’ area.

For this small depth the pressure on the axis sin θr = 0
will be

p(A,ω) ≈ p̂

zA
kR sin2 θm.

Defining the ‘radius’ a = R sin θm and the area S = πa2

of the sphere segment,

p(A,ω) = p̂
2S

λRzA
.

This is equal to the well-known Fraunhofer diffraction.
Depending on the radiation angle θr the pressure can be
approximated with

p(A,ω) = p̂
ka2

Rr�
sin(ka sin θr)
ka sin θr

. (31)

Some calculation examples are given in Figure 9.

10.2. Source outside the centre

Firstly the source will be positioned outside the centre of
the sphere on the z-axis (xB = yB = 0) and the pressure
in the far field will be considered.

This will be a symmetrical situation, so yA = 0 can be
assumed.

Y = kR sin2 θm cos θr + zB/s
�).
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Figure 9. Calculated pressure for small depth, using (4) (solid
lines), in the far field (1000m) as a function of the radiation an-
gle. Calculations for different frequencies, corresponding with
‘depth‘= λ/4, λ/8, λ/16, R = 5.4m, θm = π/5. Also show-
ing the approximation (dashed) with Fraunhofer diffraction using
(31).

And Z will remain, Z = kR sin θm sin θr.

Y

2
+

Z2

2Y
=

1
2
kR sin2 θm cos θr + zB/s

�

+
sin2 θr

cos θr + zB/s�
.

For xA = sin θr = 0 (on the z-axis): Z = 0 and Y/2 +
Z2/2Y = 1/2kR sin2 θm(1 + zB/s

�), so

I (Y,Z) = J0(Z) − cos
Y

2
+

Z2

2Y

2

+
Z

Y
J1(Z) − sin

Y

2
+

Z2

2Y

2 1/2

≈ 2 − 2 cos
1
2
kR sin2 θm 1 +

zB
s�

p(A,ω) =
p̂R

s�r�(1 + zB/s�)
(32)

· 2 − 2 cos
1
2
kR sin2 θm 1 +

zB
s�

.

The first part of (32) describes the geometrical effect,
while the root describes the interference (between 0 and
2), similar to the situation with the source in the cen-
tre. The maximum will occur at a different ‘depth’ of the
sphere segment.

Secondly the source will be moved along the x-axis
(zB = yB = 0) and the pressure in the far field will be
considered.

Assuming yA = 0, and xA/r
� = sin θr and xB/s

� =
sin θs:

Y = kR sin2 θm cos θr,

Z = kR sin θm(sin θr + sin θs).

At the specular axis, for θr = −θs, Z = 0 and the result
will be similar to that at the z-axis with the source in the
centre. The pressure field is rotated over an angle −θs.
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Figure 10. Section of the experimental setup (half ellipsoid),
S = source, M = microphone.
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Figure 11. Difference between the sound pressure level of the
reflected and the direct sound in the focal point, calculation result
(2) and measurement results (both 1/3 oct. values).

11. Experimental verification of the ampli-
fication in the focal point

To verify the theoretical amplification at the focal point an
experimental set-up was made on a small scale. It consists
of half an ellipsoid with the two focal points at a relatively
small distance. By using an elliptical shape, the source and
microphone can be at different locations. The measure-
ment set-up is shown in Figure 10. The source is in one
of the focal points.

The model was milled by CAD/CAM from a solid
polyurethane block (Ebaboard PW 920), a material with
a high density and excellent low surface porosity. The ac-
curacy of the shape of the ellipsoid is approx. 0.01mm.

The impulse response was measured with an MLS
(Maximum Length Sequence) signal. In the time domain
the separation of direct signal and (single) reflected signal
was made. The geometry was optimised to obtain suffi-
cient time separation between direct sound and reflection,
especially in the focal area.

The sound pressure at the microphone position is also
calculated, using (2), by numerical integration of the
Kirchhoff integral (2) over the half ellipsoid. The increase
of the reflected sound pressure level measured and calcu-
lated in respect to the direct sound pressure level is shown
in Figure 11. Figure 12 shows the pressure along the fo-
cal plane, as indicated in Figure 10. The results show good
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Figure 12. Sound pressure level relative to the direct sound at
5000Hz (1/3 oct.), along the axis on the focal plane (see Fig-
ure 10). Numeric solution (2) and measurement result.

agreement with the theory, confirming the validity of (2).
This comparison does not include possible deviations due
to the approximation method, as described in sections 7–
10.

12. Conclusions

This paper has provided some mathematical formulations
for sound reflections from concave spherical surfaces. The
formulation is based on a wave extrapolation method. The
approximations given can be used to calculate the sound
field in and around the focal point.

At the focal point the pressure depends on the wave-
length and the opening angle of the sphere segment. It does
not depend on the radius of the sphere. The width of the

peak pressure is also related to the wavelength. For small
wavelengths the amplification is high but the area small,
while for lower frequencies the amplification is less, but
the area is larger.

The validity of the basic integral describing the reflec-
tion from a curved surface is verified with an experiment.

Part II of this paper [1] will discuss a geometrical
method and an engineering method will be presented to
estimate the sound pressure.
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